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. De morgon's law ¢ (PAG) = 7p V]
| (Pugl=-p n-4

). cOntMPositwe

P> =TPVR = QV-PZ 18> =P
W
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© Set theory
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). A XC = (Axc)N(Bxc)
prof: (ot (K.4) be Qn Orbitrary efement
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A Quantified orqument is valid it the conclusion s true

whatever the Q(assumptions ore true.
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upiversal  modus  tollens AMBRES VX . PX)-SAX) Q@) \Pw

‘Moathematical Induction
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* Well ordering principk ek

tery nnempty set of nonnegative integers has o Smallest element.
, A
(€91 prove 2 is irrationy)

Pm'f= Suppose r-‘-"%‘ (9¢cd (mn) =14 rodlonalnu,,her[_gy wWop 3 |m| 5.-[;_-5;2“-)
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3. §
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P’l‘”" ged (0b)= Jecl (D, 0 mod b) (a< k) 0=9b+r
OO mod b=7

0=4p >ged(abl=b =9ed(h.d)

@ Qmoo b= >0

l let b= kld‘ F= klo‘ S d S O commor divisor U’f ¢.b
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Y (et (=ka0 b=l
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= ged (ab) =g cd (be)

S d S 0 common divisor of b,

¥ 0=b§ trzbtrzar  9ed(op)2gedbry  [F <3
£ p€T2%2%) D= k=mb
& .8pc  SMpllest positive iwteger linear Cowm binatiy,
d = Satth (St€2 ) > d is an Inger livear Combinath.,
SPC(Bb) = Minf SA+tb>o |S1€RY
*9cal (0b) = Spc(Q.b)
© Ycd < ¢pe
O= kd, b=kad satth= d(Sk+tky)zd = dl (Co+tb)
> Ged(0ib) S SPC@.b)
@) $pc <Ju
n=9Spc@d +r L0 Spc@b ]
= a-9(Satth) < ((-98)a+(-Ft))

WI.DHW . >
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= 0nly possible when =V
= Spewb) |a

Similorly. Spelaib) | b

=) SPcca.b) <9%cd(a,b)

S Spc(@b) = 9ol (aib)




spc(ob) =9cd (ab)s So+tb=|
Specae) = 9ed (@.C)~ uatvez|
(Se+tb) (ua+Ve) = (SQu+SUCttbu) o+ (FV) be =\

:>STPC (g.bc)=|>0
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f.exged 9 cd (ab)T So+ th

te.4.)  Geot (287,70) 7| 25923x70 44
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4‘7 =)x2| |
1| =2x7| t 9
a9 = 25?-— SxJo = 0-3b
2] = Jo-1x¢d = b- (a-3b) = -0t4b
T=3a-1b :-f%ns‘fi— (-1 %70 |
genera| Solution v sSolve  OK4bY=C
® gcdab)4 € Impossible [ d=Feolltib)=> d | ax +by ]
® gcalab)|C et a<b exist aX-ny=C  (n=-b)
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. O2b dn)> 03 )
* Modular Arithmetic * M (mida) 5 03b(med m
nfa-b >9nz=0-b>3tm:0+
. @b (micdl n) :-f-F n((0-b) $ m ab = Qb (mad m
[a]b:fa-l-khkez} a — =b M )

2. it Qedkimz=|, fhe, have K St. koK =1 (med n)
@gcd (k,n) = SPC(u,m:| =2 Sk+tn=| ->-(;n:-. |- Sk
>  1-Sk20 (mod n)
=N Skl (Mo n) =S
? k' is Unique (md n)
Assume enist ki, kr (&i#kv) kkiz EFrZ) tmgn) D k(ki=8) 20 (wmod n)
Kk (Ki-kv) = ki-ky 20 (modul = g2k (mdn)
X i i-k2]-k (mod n) and QGecl (ki) 2|
i kzj k(modn) = ik Tk (midny D T2 (madm
3. «fermat's Little Theorem

let p be o prime and Qecd(kp)=| |, then L= (mogd P )
provf

(P-N! = (k mogp) (2 modp) -- - (Cpnk mutp) (mod P )
= Fp-l (P-D! (maol P
Piso prime [,---p-1 ar coPrime with p 5 Pz (mod P>

« (ilson's Theorem D IS O prime & (P-D!=-1 (et P)

proof: @ prime > (p-n' < - (mod p) Woﬁ-ﬁi \Ué”:'
@-n. = |-P1-(ab) ... (OIL.% bt>) (mod P) (O‘ib?:‘:! (moc P )
= I‘(P-l) =2 1 (mod P)
2 -] (mod P)
@ (P-D'2-1t (modp) = Prime

Assume P is not 0 Prime

33, 51 91PQis aprime) S ‘if P-1 = Q1) = (p'z0 (modg
(P-N "' 2 -1 (modp) D (P-D'=-1 (mdg)

D Contradi chion = P is O prim®



4. Chinese Demaindexr TheOrem

<15 AXIb (mddn) 9=9cd (0 )

0¢=1 R0 b(modn)

@F>( ¢ if 9lb, OXzb(mdn\&> OX=b tné'bdgA:Eﬂ*-in'j
]O'H‘\e/r wise [ASSMM‘? Jd< J ll <:> Q‘le 'l-'L'n.

b:(at K= "‘-"-)j L Contradiction | & Ol":ib' (mod ~) 9ed (o' .0):1
with 94b) = o Slution

S hos 0 Slutow Tt Jed(am) | b

<2> §x0, tmogn) ~ K .
[ ‘.a. h&S QU‘“I’&]M& Soluton modulo N Tl=-| n,

X = Qg (e ) f'[' n,. - nhe bhe mutually COprime..
et N7 Hi ged (Vi n) =] > IXi St NiXis[ (moef nid

K
'% E - - v "n 5 -
K = 2| N'(K’al) - S' =S n. lNJ lj:flll."'k-&\;

D A= Ni(xidi) = Oi(modni)
@uniquem.s.s Assume X.y be Solutions Vi K')’io (mod #7) > ":, X=Y
Ni-- N Ok wutually 00PTime S ppvepe (XY D XY (mod Ni---inke)
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+ groph
. 21E|=3% (V)
=™

2 - GfﬂPh ISOMDTP}I?GM Gl 'S ;Siﬂﬂlfph'ic 10 G)_ means gon-e--f-o_ one MRPPf'j

L:vidyy u-vint L flr—4v) ks

<X
¥ isemorphic —— have the Same Oegree Sequemces

[e9-] s
Q<C);, cg Q L 22,227

3. Euler Theorew [ Bribheés GRlnidt /&)
®A- Connected §raph has Ow tulerian Path T‘F‘\: 4+ hg 00 r2 Vetrdiceg with oddt d.eglree,_g'

@ A connected graph has On EBulerian Cycle if enery vertex is of even degree.
A AAKETIN Bt A SRS

O
APrs ve l/r'AI.E. —> ft Ekﬁ%’i&
Preof:  Assume uand V Qre +he two vertices with odd degrees.

Add Uu-V —o form & > G' all have even degrees = have Tulerian Cycle
S Start 0t U . end at v (0 path +hot uses @ach edge exactly once)

remove u-v

4. direct qroph
§ weakly comeoted  LERHRIBRE
Strongly connected ﬁiﬂaﬁfib&.
divectea Cyel2 IREE Gad anErkk |

5 Stable match  O(p%)
Ao AR . -8 - a8
Propwsers will get +he best possibie motches almong all pissive Stable matchings
%Q;ns proposed will get +he worst possible marches Mimong Oll Prssible Stable matchings.
Q RS I stable motcn Msi(R.& ) €M
R: the -F;IS'I: boy rejectea by validl parter a ( &5 ﬁ%ﬁ@é;%}
> 8 vebd M R.eeM . (b.G)em

\M.f\-—-



£ ) PYGF@rS & rothetr than 6 L—> el"F""S”' them €
O & 0ccepted (.G 1€M rother than (', 6)€M  contodictin
drejected  coptrodict wi+h B i« the first DOy beixg rRjectes! .

S G TE6 T4 v i;}a;s%e; KUALEELE R
! 3
=> lg ;:G: = unhstable &3k
®
O (B.6) €M M (pe)€N (B &)Em

HI exe<t E . E,>€1 FLI ond (B'.Gl) IS avald POII‘fner
in O We con know (B.&)EM D &Gre6

Bege' ;
f'ﬁm&' = Unvtobie O subse:tof edges S v U—EV, dg(UFI
v perfoct g mPTES,
sl h motoh j
b blPartH-e Srop "3 WX Mum ﬂ'ﬁ%
bipartite
e Hall's Theorenn canre

A bipartite Graph & =(v,w.t) has o perfect matching iff IN(S)|2 |$|
for each Subset S of V ounolw . CN(sIzy vl vis o neigber of Some VeIHEX Tn ST

Ce9.) Show that atree hos at most ghe perfect matching.

Assume T hos aidi‘f-fere.nt match Mi.my, \let T =(v, MaMmy)
AR

T = (v, M.AMS VveV .+he ossocioted edge |
® (uV)€EMam, 5 (U Mda, VET ¢ deg(vi=0
D (UMEAMM D (Uv)€ram . vETPdeg(v)=2
> deg (Vi€ (0.2 §
SM M M MEF D TRRA



7~ X (&) Chromatic number = Minimum nNUMber O‘f colors to color 61
osmple circle X (Covem)= 2 X (Cogd) =2 ® comylete Gupns X (knlzu

@) wheels X(wodd\=¢ X (Wepen)=3 @

* A groph is 2-colrgble iff it is bipartite.

O A=>B=>A even- length poth can return <o the same partition

® P Cred) bfs H1&%HE
ASSCAM-@ (_U.\') Some Color > de) mod 2= cdt(V) mogl 2
uwsSw->\V o =atb

v\ V
axw/b d(u]: d(w) + Q d(v)=d(w)"b

idm > 0 nod 2 hmod 2 A>uSUS 0 d =atbt odd

P < <
> (Uv) Same  colsr  DN.E J w&_?S(&LmaxMU (deg (V) t |

* w(g) the largest spe of @ COmplete Subgraph thot & Contaims > X (&) 2 w(e)
Cinlerval Graph W (&) = A(6) & ‘ﬁ#ﬁf‘éd oM X (&) Sd) ]

5. planar quh5 Cihere s @ woy t0 draw +he gaph on 0 plane wHhout the edges ChossingJ

Connected Planar graph nvertices IMEdqu.-F face S ]n"Wl'l"F"'Z (
c \.J—E:._:'f_\l —

+ k. connected Cp mpdemts
N-m +f =3ni-2mi t3+i - (k-1) = k+|
#RRIEE Zdeg(face) =2f Z3F
* § Colorivg
£ € 1S o Simpe planar graph (NZy) _+hem M <in-6
.2-fr1:‘-_IJ:_I ki (ﬁ-if‘?@ﬁmﬁl‘a) z34 Ceaoln face hos at least 3 edges |

i

(31 &G=(V.t) be aQgraph ~“hot exefy two odd cycles n G has at Jepst
one common vertex. Show & is S- colorable.

® no odd Cycles  bipartite graph > 2 -colorable

D leA [ Vo,----Vatbe anodd cvele ¢ |, G = fV.ED v =V |wo-v}
D &' is bipartite grophl BRBHAARRD D 2- o lomble



L ican ocdd cycle = - colorable

-

= & i¢ S -colotoble

d. combinotorics

* in Clusion -€xClusron (in SeAs)

() A ]=3 2 4] - X [ainAg] - « (-0 [ANAN-NA

| """JI-

(%) - (%) « . .. L () =
A 1ea hing &ar. n 2Bk i R315 fhNdx
h (nkyz (%) (n-0)
tmy=nt - 2 (1) (-1 em g 2
« B &ﬁ Euler s Jotient Function

.
LP(M =9 - ll':"""):P]’J T +(_,)rP P =N Tt (l-'f,l]‘)

—
=1

J,"(Aﬂ:‘?'(ﬂu) =X2
9. mapping \1I{{- SR "fﬁt\*'ﬂ“]
: ‘wjechon B no two inputs hove -the same output.
Surjection {HET  eNOrY outputs S pOSsible
bijection =xBg  IA]=B] C~-xh2]

. I{ fis 0 bijection from Atod . then [AIZB]

te.9.) prove £(xy=2x is bijeetive

Q injective  Suppose Fx1 )= F%) 2% =2Xa >x.=x1
R Surjective Vg ek x=3 €R S.t. +n=ak= 2.2 =Y

* Map counting
ERJNxi+xa=n. Kica,. X2< O (X, Xa20)

0, A'—lrﬂl.)(l-) |K|+\(1=HA1.zu,knn‘_(

|A| "*1_') > n+|

Naonswesr : (nt) -may (0, n-01 1) - hax (0,n-0.1)

@ A ;| (XuX2) | Kithazn, X 2@, X 20 }
+ MaX(0, n=RA =Qxt!)

IA-;‘: ( -a1|\ = N-0r|
@ Ay = T“nh)\ HtXa 2n Xl'!ﬁ,:’h’-'-&li

,A‘ll hal-miﬂ") 2 n-Q -Gy ¢



[e3] +he number of cnt .

for iz tv n do 9 x:= k-1, Xazj-k  Aysi-j Xezn -1 (K20
'f'“'jzl 0 7 do > KvtxotFXat X =h ~| n;_lj:,'-]): (n:l)
forks) to j o @) %3 A AR > XiR
Cnt + | D K -- - -I-Mn-—-f‘ =3 (#v20) (Hn"
> (ﬂ+5 |§ = nﬂ.) (nrl-) [

[e9i) nAafPbS-ak  hed Fe ]
Ll'_jlr— K| 2 (] & -« . k Ixen ]

Xt X2+~ = tXew N—K (X120 ,XaZ| -- - KeZ| Ke*Z0)

- +(&t)~| ~k ¢
=S Xt "‘XK+\ - n-k-(g-1) =n-2kt| (Xi20) 5 ((l’l J‘;:“_)| e ); (n 'I;I

. divicion Fule A>E is k- |Al=kle|
+ Catalan number E ks F]‘ (l:) - (2:) = (i:)

AL 10.0) > (nn) BEIE (Fidh Low-right. e BEER, Vx>
) BHR3ITIT3Ie0 S Yorqgdy  (0,0) 5 (n-f,nn) SdmsH

@ injection Al <1b|  difforent poths Fiep to different paths
@surjection [A|Z[b] esery parn in A must ‘ctoss” the diagonal ot least Once

(BRegrFENas)



